Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2313354121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457520

RESUMEN

Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.


Asunto(s)
Domesticación , Saccharomycetales , Humanos , Filogenia , Saccharomycetales/genética , Metaboloma , Saccharomyces cerevisiae/genética
2.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385286

RESUMEN

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Asunto(s)
Insuficiencia Multiorgánica , Tromboplastina , Animales , Ratones , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Factor VIIa/metabolismo , Endopeptidasas/metabolismo
3.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366144

RESUMEN

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Proteómica , Tronco Encefálico , Cerebelo , Perfilación de la Expresión Génica
4.
Cardiovasc Res ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309955

RESUMEN

AIMS: Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signaling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS: Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modeling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced upregulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modeling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSIONS: Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.

5.
Proteomics ; 24(1-2): e2300100, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37287406

RESUMEN

Increased throughput in proteomic experiments can improve accessibility of proteomic platforms, reduce costs, and facilitate new approaches in systems biology and biomedical research. Here we propose combination of analytical flow rate chromatography with ion mobility separation of peptide ions, data-independent acquisition, and data analysis with the DIA-NN software suite, to achieve high-quality proteomic experiments from limited sample amounts, at a throughput of up to 400 samples per day. For instance, when benchmarking our workflow using a 500-µL/min flow rate and 3-min chromatographic gradients, we report the quantification of 5211 proteins from 2 µg of a mammalian cell-line standard at high quantitative accuracy and precision. We further used this platform to analyze blood plasma samples from a cohort of COVID-19 inpatients, using a 3-min chromatographic gradient and alternating column regeneration on a dual pump system. The method delivered a comprehensive view of the COVID-19 plasma proteome, allowing classification of the patients according to disease severity and revealing plasma biomarker candidates.


Asunto(s)
COVID-19 , Proteómica , Animales , Humanos , Proteómica/métodos , Péptidos/análisis , Proteoma/análisis , Cromatografía Liquida/métodos , Mamíferos/metabolismo
6.
Front Med (Lausanne) ; 10: 1194754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396922

RESUMEN

The sequela of COVID-19 include a broad spectrum of symptoms that fall under the umbrella term post-COVID-19 condition or syndrome (PCS). Immune dysregulation, autoimmunity, endothelial dysfunction, viral persistence, and viral reactivation have been identified as potential mechanisms. However, there is heterogeneity in expression of biomarkers, and it is unknown yet whether these distinguish different clinical subgroups of PCS. There is an overlap of symptoms and pathomechanisms of PCS with postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). No curative therapies are available for ME/CFS or PCS. The mechanisms identified so far provide targets for therapeutic interventions. To accelerate the development of therapies, we propose evaluating drugs targeting different mechanisms in clinical trial networks using harmonized diagnostic and outcome criteria and subgrouping patients based on a thorough clinical profiling including a comprehensive diagnostic and biomarker phenotyping.

7.
Nat Biomed Eng ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474612

RESUMEN

Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.

8.
Nat Metab ; 5(4): 660-676, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024754

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is known to contain an active-site cysteine residue undergoing oxidation in response to hydrogen peroxide, leading to rapid inactivation of the enzyme. Here we show that human and mouse cells expressing a GAPDH mutant lacking this redox switch retain catalytic activity but are unable to stimulate the oxidative pentose phosphate pathway and enhance their reductive capacity. Specifically, we find that anchorage-independent growth of cells and spheroids is limited by an elevation of endogenous peroxide levels and is largely dependent on a functional GAPDH redox switch. Likewise, tumour growth in vivo is limited by peroxide stress and suppressed when the GAPDH redox switch is disabled in tumour cells. The induction of additional intratumoural oxidative stress by chemo- or radiotherapy synergized with the deactivation of the GAPDH redox switch. Mice lacking the GAPDH redox switch exhibit altered fatty acid metabolism in kidney and heart, apparently in compensation for the lack of the redox switch. Together, our findings demonstrate the physiological and pathophysiological relevance of oxidative GAPDH inactivation in mammals.


Asunto(s)
Cisteína , Gliceraldehído-3-Fosfato Deshidrogenasas , Humanos , Animales , Ratones , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oxidación-Reducción , Cisteína/metabolismo , Estrés Oxidativo , Peróxido de Hidrógeno/farmacología , Mamíferos/metabolismo
9.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080200

RESUMEN

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Proteoma/metabolismo , Genómica/métodos , Genoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
EMBO Mol Med ; 15(4): e16061, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36939029

RESUMEN

The utilisation of protein biomarker panels, rather than individual protein biomarkers, offers a more comprehensive representation of human physiology. It thus has the potential to improve diagnosis, prognosis and the differentiation of responders from nonresponders in the context of precision medicine. Although several proteomic techniques exist for measuring biomarker panels, the integration of proteomics into clinical practice has been limited. In this Commentary, we highlight the significance of quantitative protein biomarker panels in clinical medicine and outline the challenges that must be addressed in order to identify the most promising panels and implement them in clinical routines to realise their medical potential. Furthermore, we argue that the absolute quantification of protein panels through targeted mass spectrometric assays remains the most promising technology for translating proteomics into routine clinical applications due to its high flexibility, low sample costs, independence from affinity reagents and low entry barriers for its integration into existing laboratory workflows.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteómica/métodos , Biomarcadores/metabolismo , Proteoma/análisis , Medicina de Precisión/métodos , Espectrometría de Masas/métodos
11.
Nat Microbiol ; 8(3): 441-454, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797484

RESUMEN

Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations.


Asunto(s)
Aminoácidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Marcaje Isotópico
12.
J Neuroinflammation ; 20(1): 30, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759861

RESUMEN

Patients with COVID-19 can have a variety of neurological symptoms, but the active involvement of central nervous system (CNS) in COVID-19 remains unclear. While routine cerebrospinal fluid (CSF) analyses in patients with neurological manifestations of COVID-19 generally show no or only mild inflammation, more detailed data on inflammatory mediators in the CSF of patients with COVID-19 are scarce. We studied the inflammatory response in paired CSF and serum samples of patients with COVID-19 (n = 38). Patients with herpes simplex virus encephalitis (HSVE, n = 10) and patients with non-inflammatory, non-neurodegenerative neurological diseases (n = 28) served as controls. We used proteomics, enzyme-linked immunoassays, and semiquantitative cytokine arrays to characterize inflammatory proteins. Autoantibody screening was performed with cell-based assays and native tissue staining. RNA sequencing of long-non-coding RNA and circular RNA was done to study the transcriptome. Proteomics on single protein level and subsequent pathway analysis showed similar yet strongly attenuated inflammatory changes in the CSF of COVID-19 patients compared to HSVE patients with, e.g., downregulation of the apolipoproteins and extracellular matrix proteins. Protein upregulation of the complement system, the serpin proteins pathways, and other proteins including glycoproteins alpha-2 and alpha-1 acid. Importantly, calculation of interleukin-6, interleukin-16, and CXCL10 CSF/serum indices suggest that these inflammatory mediators reach the CSF from the systemic circulation, rather than being produced within the CNS. Antibody screening revealed no pathological levels of known neuronal autoantibodies. When stratifying COVID-19 patients into those with and without bacterial superinfection as indicated by elevated procalcitonin levels, inflammatory markers were significantly (p < 0.01) higher in those with bacterial superinfection. RNA sequencing in the CSF revealed 101 linear RNAs comprising messenger RNAs, and two circRNAs being significantly differentially expressed in COVID-19 than in non-neuroinflammatory controls and neurodegenerative patients. Our findings may explain the absence of signs of intrathecal inflammation upon routine CSF testing despite the presence of SARS-CoV2 infection-associated neurological symptoms. The relevance of blood-derived mediators of inflammation in the CSF for neurological COVID-19 and post-COVID-19 symptoms deserves further investigation.


Asunto(s)
COVID-19 , Encefalitis por Herpes Simple , Sobreinfección , Humanos , Proteoma/metabolismo , ARN Viral/metabolismo , Sobreinfección/metabolismo , SARS-CoV-2 , Encéfalo/metabolismo , Inflamación/metabolismo , Encefalitis por Herpes Simple/líquido cefalorraquídeo , Mediadores de Inflamación/metabolismo
13.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608659

RESUMEN

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Asunto(s)
Longevidad , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transducción de Señal
14.
J Clin Endocrinol Metab ; 108(8): 2087-2098, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36658456

RESUMEN

CONTEXT: Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. OBJECTIVE: Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. METHODS: We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. RESULTS: Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. CONCLUSION: Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteoma , Humanos , Masculino , Proteómica , Glucosa , Restricción Calórica
15.
Proteomics ; 23(7-8): e2200013, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36349817

RESUMEN

There are multiple reasons why the next generation of biological and medical studies require increasing numbers of samples. Biological systems are dynamic, and the effect of a perturbation depends on the genetic background and environment. As a consequence, many conditions need to be considered to reach generalizable conclusions. Moreover, human population and clinical studies only reach sufficient statistical power if conducted at scale and with precise measurement methods. Finally, many proteins remain without sufficient functional annotations, because they have not been systematically studied under a broad range of conditions. In this review, we discuss the latest technical developments in mass spectrometry (MS)-based proteomics that facilitate large-scale studies by fast and efficient chromatography, fast scanning mass spectrometers, data-independent acquisition (DIA), and new software. We further highlight recent studies which demonstrate how high-throughput (HT) proteomics can be applied to capture biological diversity, to annotate gene functions or to generate predictive and prognostic models for human diseases.


Asunto(s)
Proteómica , Biología de Sistemas , Humanos , Proteómica/métodos , Proteínas/análisis , Espectrometría de Masas/métodos , Programas Informáticos
16.
PLoS Biol ; 20(12): e3001912, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36455053

RESUMEN

The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1). Hsu1p acts as a homocysteine synthase and allows the cells to substitute for Met17p by reassimilating hydrosulfide ions leaked from met17Δ cells into O-acetyl-homoserine and forming homocysteine. Our results show that cells can cooperate to achieve sulfur fixation, indicating that the collective properties of microbial communities facilitate their basic metabolic capacity to overcome sulfur limitation.


Asunto(s)
Cisteína Sintasa , Metionina , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína Sintasa/genética , Cisteína Sintasa/metabolismo , Metionina/metabolismo , Proteómica , Racemetionina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo
17.
Elife ; 112022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36449390

RESUMEN

The possibility to record proteomes in high throughput and at high quality has opened new avenues for biomedical research, drug discovery, systems biology, and clinical translation. However, high-throughput proteomic experiments often require high sample amounts and can be less sensitive compared to conventional proteomic experiments. Here, we introduce and benchmark Zeno SWATH MS, a data-independent acquisition technique that employs a linear ion trap pulsing (Zeno trap pulsing) to increase the sensitivity in high-throughput proteomic experiments. We demonstrate that when combined with fast micro- or analytical flow-rate chromatography, Zeno SWATH MS increases protein identification with low sample amounts. For instance, using 20 min micro-flow-rate chromatography, Zeno SWATH MS identified more than 5000 proteins consistently, and with a coefficient of variation of 6%, from a 62.5 ng load of human cell line tryptic digest. Using 5 min analytical flow-rate chromatography (800 µl/min), Zeno SWATH MS identified 4907 proteins from a triplicate injection of 2 µg of a human cell lysate, or more than 3000 proteins from a 250 ng tryptic digest. Zeno SWATH MS hence facilitates sensitive high-throughput proteomic experiments with low sample amounts, mitigating the current bottlenecks of high-throughput proteomics.


Asunto(s)
Investigación Biomédica , Proteómica , Humanos , Proteoma , Biología de Sistemas , Descubrimiento de Drogas
18.
EMBO Mol Med ; 14(11): e16643, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36169042

RESUMEN

The rapid rise of monkeypox (MPX) cases outside previously endemic areas prompts for a better understanding of the disease. We studied the plasma proteome of a group of MPX patients with a similar infection history and clinical manifestation typical for the current outbreak. We report that MPX in this case series is associated with a strong plasma proteomic response among nutritional and acute phase response proteins. Moreover, we report a correlation between plasma proteins and disease severity. Contrasting the MPX host response with that of COVID-19, we find a range of similarities, but also important differences. For instance, CFHR1 is induced in COVID-19, but suppressed in MPX, reflecting the different roles of the complement system in the two infectious diseases. Of note, the spatial overlap in response proteins suggested that a COVID-19 biomarker panel assay could be repurposed for MPX. Applying a targeted protein panel assay provided encouraging results and distinguished MPX cases from healthy controls. Hence, our results provide a first proteomic characterization of the MPX human host response and encourage further research on protein-panel assays in emerging infectious diseases.


Asunto(s)
COVID-19 , Humanos , Virus de la Viruela de los Monos/fisiología , Proteómica , Investigación
19.
J Exp Med ; 219(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36121416

RESUMEN

The primary function of the small intestine (SI) is to absorb nutrients to maintain whole-body energy homeostasis. Enterocytes are the major epithelial cell type facilitating nutrient sensing and uptake. However, the molecular regulators governing enterocytes have remained undefined. Here, we identify c-Maf as an enterocyte-specific transcription factor within the SI epithelium. c-Maf expression was determined by opposing Noggin/BMP signals and overlapped with the zonated enrichment of nutrient transporters in the mid-villus region. Functionally, enterocytes required c-Maf to appropriately differentiate along the villus axis. Specifically, gene programs controlling carbohydrate and protein absorption were c-Maf-dependent. Consequently, epithelial cell-specific c-Maf deletion resulted in impaired enterocyte maturation and nutrient uptake, including defects in the adaptation to different nutrient availability. Concomitantly, intraepithelial lymphocytes were less abundant, while commensal epithelial cell-attaching SFB overgrew in a c-Maf-deficient environment, highlighting the close interdependence between the intestinal epithelium, immune system, and microbiota. Collectively, our data identified c-Maf as a key regulator of SI enterocyte differentiation and function, essential for nutrient, immune, and microbial homeostasis.


Asunto(s)
Enterocitos , Intestinos , Proteínas Proto-Oncogénicas c-maf , Animales , Carbohidratos , Enterocitos/metabolismo , Ratones , Nutrientes , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-maf/metabolismo , Factores de Transcripción/metabolismo
20.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780157

RESUMEN

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Espermidina , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Espermidina/farmacología , Espermidina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...